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Overview

! Monte Carlo Device Simulation
� Introduction

� Problem formulation

� Numerical methods

! Laser simulation
� Optics

� Electronics

� Simulation
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Device simulation - introduction

! Traditional drift-diffusion models describe the behavior of 
the mean-energy carriers 

! Many important effects depend on high energy carriers
� Ballistic transport

� Damage from hot-carrier injection into dielectrics

� Memory programming by injection of hot carriers into 
floating gates
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BTE for device simulation

! Full problem is described by distribution of electrons in 
space and momentum

! 6-dimensional problem, 3 space dimensions, 3 
momentum dimensions

! Boltzmann Transport Equation

! Direct solution extremely challenging
� Monte Carlo approach generally adopted
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Monte Carlo device simulation

! Inject electrons and holes, one at a time, close to 
contacts, with momentum randomly distributed so that 
energy mean is at thermal equilibrium

! Integrate equations of motion, subject to random 
scattering events with lattice vibrations (phonons) and 
dopant atoms

! Follow until particle exits or comes to equilibrium 

! Use statistical enhancement techniques to avoid following 
�boring� particles

! Accumulate statistics over many particles
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Monte Carlo simulation - discretization

! Represent phase space by a Cartesian product of a space 
(x) grid and a momentum (k) grid

� X-grid is typical transistor grid with simplices of dimension 
1-100nm

� K-grid is a tetrahedral decomposition of unit momentum cell

� Main focus of this presentation
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Equations of motion
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! Applied during free-flight time

! Time-step inversely proportional to scattering rate

! Time-step also limited by time to reach cell edge

! Inside a Tx-Tk cell, energy and potential are linear, 
gradients are constant, equations can be integrated 
exactly

! Much better than numerical integration, no gain/loss of 
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Scattering rates 

! Scatter from a state with momentum     to a state with a 
different momentum       with or without change in 
energy

! Requires selection of final state with specific energy

! Requires knowledge of density of states            ~ area of 
energy isosurface with energy 

E
E

E

EEEkkkfEDkdS mechkkk
mechanisms

kk

∆
∆

=∆

∆−−′′−′= ′′′→ ∫∑

 large :optical
 small :acoustic
0:elastic

)δ(),())(1)((3 M

k′
k

)( kED ′

kE ′



Agere Systems 9

Band structure (1)

! Electrons in free space: momentum and energy are 
simply related by

! Electrons in a periodic crystal: momentum is 
characterized by a band index and a momentum which 
varies over a minimum periodic cell in reciprocal space
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Band structure (2)
! Surfaces of constant energy no longer spherical

! For low energy electrons or holes, parabolic ok

! For higher energies, analytic bands maybe ok

! For hot carriers, must take full band shape into 
account
! Difficult to identify states with particularly energy

! Difficult to calculate area of iso-energy surface

! But must be accurate since )(kEv nk
∇∝

Cu Si
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Hole bands

�Cross section of k-space at 

� Energy contours
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Electron bands

B4 B6

B5 B7
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Full band representation
! Decompose Brillouin zone into 48 wedges, all of which are 

related to the first by symmetry (8 axis inversion, 3 cyclic 
permutation, 2 axis switching)

! Discretize irreducible wedge into tetrahedral mesh in k-
space

! Linear shape function in tet �> constant E surface easy

! Further important simplification if tet is energy aligned so 
that nodes are on constant energy surfaces

! Simplifies choice of       with specific energy

! Greatly simplifies iso-energy surface area calculation

k′
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Interpolation
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Total DOS of a constant energy surface
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The integrated DOS are pre-computed for each contour level of 
the mesh
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Final state selection

�Given a desired final state energy         , choosing a new 
momentum state            after scattering is also easy

�Identify tets with 

�Select tetrahedron type randomly among A,B,C 

� defines isosurface inside tet 

�Choose two random variables distributed randomly over a 
right triangle (type A or C) or a square (type B) 

�Treat as barycentric coordinates to choose       on 
isosurface
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Mesh generation

�Special purpose mesh-generation carried out once for each 
material (silicon, GaAs, InP, �)

�Calculate fine 3d mesh of E(k) using band-structure code

�Build skeleton from critical points and ridge lines

�Use ridge lines to divide into regions

�Within each region, generate vertices along contours

�Adhere to ridge lines

�Adhere to wedge boundaries

�Piecewise linear approximation to region boundaries

�Contour-aligned grid produced by refining grid edges

�Edges crossing more than one countour subdivided

�Curvature used to monitor discretization error

0=∇ Ek
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Mesh generation
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Mesh generation statistics

0.4211115424197(e)

0.4561324316136(e)

0.56417807716585(e)

0.52916614313434(e)

0.5901816174143(h)

0.6111922685302(h)

0.5672411983491(h)

QualityContoursTetrahedraVerticesBand

Error tolerance of 0.02eV, and 0.002eV near minima
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Results

! Simulation times in hours, not 
weeks

! Huge dynamic range in carrier 
distribution functions

! Smooth variation of output with 
input (low statistical noise)

! Availability of new simulation 
methods has led to the 
development of new types of 
flash memory using physical 
mechanisms not previously 
understood
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Good spatial resolution available -

essential for accurate damage modeling
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Microscopic Laser Simulation
! Fundamental Processes

� Quantum optics

� Carrier transport

� Carrier recombination

� Quantum well capture

� Quantum well gain

� Length scales (10Å - 10µm)
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Optical processes
! Photons generated when electrons meet holes 

(spontaneous emission)

! Photons absorbed by free carriers

! Photons lost at mirror ends of device (absorbed 
or escaped)

! Photons stimulate emission of photons (basis of 
laser action - stimulated emission)

! In steady state
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Optical modes
! Shape of mode is determined by scalar wave equation

! Lateral length scale much smaller than longitudinal, write

! Solve for lateral mode (eigenvalue problem)

! Generally only one lateral mode active, determines center 
energy (~1eV), with a number of longitudinal modes 
separated by ~1meV energy

! Laser is designed so center energy (determined by device 
geometry) corresponds to energy emitted when e-h pair 
recombines

! Product         determines local optical power at each point in 
space
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Free carriers

! Drift-diffusion equation for free carriers (aka 3d carriers)

! Charge balance

! Electron transport

! Hole transport

! discretized as scalar variables, one per mesh point

! Recombination         algebraic function 

! Capture of electrons into wells        a (messy, but local) function 
of electron density, electrostatic potential and captured electron 
density 

! Exponential upwinding used (Scharfetter-Gummel)
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Bound carriers - modes

! Bound-carrier space distribution is determined by eigenvalue 
problem (Schrödinger equation)

! Solutions 

! Various scattering processes broaden sharp levels, accounted 
for empirically

! Density of states ~ 
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Bound carriers - density
! Total number of bound (2d) carriers is determined by position 

of levels relative to bound carrier fermi-level 
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Bound carriers - interaction with free 
carriers

! Number of bound carriers is determined by balance of 
capture, recombination and emission processes

! Either       or        serves to characterize bound carrier 
population

! Convenient to keep both variables as solution variables and 
add the relationship between them as an extra equation

0),(),,,,( 2233322 =−− spdpdnddddpdnn RSFFGnpnFFC

dnF 2 dn2

dn3 F2D
F3D

Ec

Grid

E2D

� Cn(n3D,Fn2D,V) appears in n3D
equations near quantum well

� But F2D (V) non-locally through the 
quantum well region

� Solution: introduce F2D as an 
auxiliary solution variable
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Capture and gain expressions
! Convolution integrals involving the fermi function                   

and its integrals

! Capture rate

! analagous to

! Gain
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Gain: Qualitative Physics
E

k weight

hν

Elec
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Hole
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Γ

�Carrier scattering: broadening

�Probability of emission
Integrate:

Ah (Eh)fh (Eh)Ae (Ee)fe(Ee)
for hν = Ee - Eh

�Key point
� Usually simplify: Γ << kBT

common Lorentzian approximation:
fh (Ehk) fe(Eek)L(hν - (Eek - Ehk))

� But for lasers: Γ ~ kBT
" full convolution required
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Assemble all the pieces:
Fully Coupled Device Equations

! Free Carriers (3D)

! Bound Carriers (2D)

! Photon Modes
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Key Numerical Issue - Laser Threshold
! Threshold for photon 

intensity

� Pole as gain approaches 
loss

� I ~ exp(V/kT)

� 2X in current happens over 
0.04V at V~0.8V

� Solution: introduce slack 
variable to avoid negative 
photon number
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Solution Flowchart

Solve optical 
mode

Solve bound carrier 
eigenvalue system

�Assemble Newton RHS and Jacobian for 3d 
carriers

�Assemble Newton RHS and Jacobian for 2d 
carriers 

�Assemble Newton RHS and Jacobian for 
photon number and slack variable

Direct solve RxJ −=∆

Converge?

New 
bias 
point

�Electrical and optical 
PDEs discretized on same 
grid

�Fully self-consistent 
solution of bound and free 
electrons

�Slack variable for photon 
number
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System Jacobian
! All derivatives evaluated 

! Derivatives of eigenvalues wrt parameters of eigenvalue problem 
expanded using first-order perturbation theory
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Steady State Results:
Simulation vs Experiment
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! Gain spectra near threshold

� Spectral shape

� Temperature dependence

� Direct verification of key QW 
model

! Threshold current density

� Change with doping

� Temperature dependence

� Jth ∝ exp(T/T0)

� Break in T0 near 50 C
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Effective Differential Gain:
Simulation vs Experiment
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increases with active layer 
doping

! But � Temperature 
sensitivity also increases !

! Simulation accounts for both 
the doping and the 
temperature dependence

� No parameter is adjusted 
for the modulation efficiency
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Conclusion
! Demonstrate efficient, integrated LASER simulator

� Fully self-consistent calculation of electron and photon 
processes

� Solved using full Newton method

� Slack variables solve threshold problem

! Excellent agreement with steady state and dynamic 
performance data for 1.3µm MQW lasers

� Explain temperature dependent threshold (T0)

� Explain temperature & density dependent modulation 
efficiency

� Explains diminishing returns of extra quantum wells
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